Structural characteristics of the redox-sensing coiled coil in the voltage-gated H+ channel.
نویسندگان
چکیده
Oxidation is an important biochemical defense mechanism, but it also elicits toxicity; therefore, oxidation must be under strict control. In phagocytotic events in neutrophils, the voltage-gated H(+) (Hv) channel is a key regulator of the production of reactive oxygen species against invading bacteria. The cytoplasmic domain of the Hv channel forms a dimeric coiled coil underpinning a dimerized functional unit. Importantly, in the alignment of the coiled-coil core, a conserved cysteine residue forms a potential intersubunit disulfide bond. In this study, we solved the crystal structures of the coiled-coil domain in reduced, oxidized, and mutated (Cys → Ser) states. The crystal structures indicate that a pair of Cys residues forms an intersubunit disulfide bond dependent on the redox conditions. CD spectroscopy revealed that the disulfide bond increases the thermal stability of the coiled-coil protein. We also reveal that two thiol modifier molecules are able to bind to Cys in a redox-dependent manner without disruption of the dimeric coiled-coil assembly. Thus, the biochemical properties of the cytoplasmic coiled-coil domain in the Hv channel depend on the redox condition, which may play a role in redox sensing in the phagosome.
منابع مشابه
Long α helices projecting from the membrane as the dimer interface in the voltage-gated H+ channel
The voltage-gated H(+) channel (Hv) is a H(+)-permeable voltage-sensor domain (VSD) protein that consists of four transmembrane segments (S1-S4). Hv assembles as a dimeric channel and two transmembrane channel domains function cooperatively, which is mediated by the coiled-coil assembly domain in the cytoplasmic C terminus. However, the structural basis of the interdomain interactions remains u...
متن کاملThe Polar T1 Interface Is Linked to Conformational Changes that Open the Voltage-Gated Potassium Channel
Kv voltage-gated potassium channels share a cytoplasmic assembly domain, T1. Recent mutagenesis of two T1 C-terminal loop residues implicates T1 in channel gating. However, structural alterations of these mutants leave open the question concerning direct involvement of T1 in gating. We find in mammalian Kv1.2 that gating depends critically on residues at complementary T1 surfaces in an unusuall...
متن کاملCrystal structure of a trimeric form of the K(V)7.1 (KCNQ1) A-domain tail coiled-coil reveals structural plasticity and context dependent changes in a putative coiled-coil trimerization motif.
Coiled-coils are widespread protein-protein interaction motifs typified by the heptad repeat (abcdefg)(n) in which "a" and "d" positions are hydrophobic residues. Although identification of likely coiled-coil sequences is robust, prediction of strand order remains elusive. We present the X-ray crystal structure of a short form (residues 583-611), "Q1-short," of the coiled-coil assembly specific...
متن کاملInterrogation of the intersubunit interface of the open Hv1 proton channel with a probe of allosteric coupling
The Hv1 voltage-gated proton channel is a dimeric complex consisting of two voltage-sensing domains (VSDs), each containing a gated proton permeation pathway. Dimerization is controlled by a cytoplasmic coiled-coil domain. The transitions from the closed to the open state in the two VSDs are known to occur cooperatively; however, the underlying mechanism is poorly understood. Intersubunit inter...
متن کاملRole of the C-terminal domain in the structure and function of tetrameric sodium channels
Voltage-gated sodium channels have essential roles in electrical signalling. Prokaryotic sodium channels are tetramers consisting of transmembrane (TM) voltage-sensing and pore domains, and a cytoplasmic carboxy-terminal domain. Previous crystal structures of bacterial sodium channels revealed the nature of their TM domains but not their C-terminal domains (CTDs). Here, using electron paramagne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 288 25 شماره
صفحات -
تاریخ انتشار 2013